基本信息
定義
將燃料具有的化學能直接變為電能的發電裝置。
簡介
燃料電池十分復雜,涉及化學熱力學、電化學、電催化、[1]材料科學、電力系統及自動控制等學科的有關理論,具有發電效率高、環境污染少等優點??偟膩碚f,燃料電池具有以下特點:能量轉化效率高;他直接將燃料的化學能轉化為電能,中間不經過燃燒過程,因而不受卡諾循環的限制。燃料電池系統的燃料—電能轉換效率在45%~60%,而火力發電和核電的效率大約在30%~40%。安裝地點靈活;燃料電池電站占地面積小,建設周期短,電站功率可根據需要由電池堆組裝,十分方便。燃料電池無論作為集中電站還是分布式電,或是作為小區、工廠、大型建筑的獨立電站都非常合適。負荷響應快,運行質量高;燃料電池在數秒鐘內就可以從最低功率變換到額定功率。
普通電池
電池的性能參數主要有電動勢、容量、比能量和電阻。電動勢等于單位正電荷由負極通過電池內部移到正極時,電池非靜電力(化學力)所做的功。電動勢取決于電極材料的化學性質,與電池的大小無關。電池所能輸出的總電荷量為電池的容量,通常用安培小時作單位。在電池反應中,1千克反應物質所產生的電能稱為電池的理論比能量。電池的實際比能量要比理論比能量小。因為電池中的反應物并不全按電池反應進行,同時電池內阻也要引起電動勢降,因此常把比能量高的電池稱做高能電池。電池的面積越大,其內阻越小。
能量變化
為了利用煤或者石油這樣的燃料來發電,必須先燃燒煤或者石油。它們燃燒時產生的能量可以對水加熱而使之變成蒸汽,蒸汽則可以用來使汽輪發電機組的磁場在定子線圈中旋轉。這樣就產生了電流。換句話說,我們是把燃料的化學能轉變為熱能,然后把熱能轉換動能,最后轉換為電能。在這種雙轉換的過程中,許多原來的化學能浪費掉了。然而,燃料非常便宜,雖有這種浪費,也不妨礙我們生產大量的電力,而無需昂貴的費用。還有可能把化學能直接轉換為電能,而無需先轉換為熱能。為此,我們必須使用電池。這種電池由一種或多種化學溶液組成,其中插入兩根稱為電極的金屬棒。每一電極上都進行特殊的化學反應,電子不是被釋出就是被吸收。一個電極上的電勢比另一個電極上的大,因此,如果這兩個電極用一根導線連接起來,電子就會通過導線從一個電極流向另一個電極。這樣的電子流就是電流,只要電池中進行化學反應,這種電流就會繼續下去。手電筒的電池是這種電池的一個例子。在某些情況下,當一個電池用完了以后,人們迫使電流返回流入這個電池,電池內會反過來發生化學反應,因此,電池能夠貯存化學能,并用于再次產生電流。汽車里的蓄電池就是這種可逆電池的一個例子。在一個電池里,浪費的化學能要少得多,因為其中只通過一個步驟就將化學能轉變為電能。然而,電池中的化學物質都是非常昂貴的。鋅用來制造手電筒的電池。如果你試圖使用足夠的鋅或類似的金屬來為整個城市準備電力,那么,一天就要花成本費數十億美元。
歷史
燃料電池的發明
1839年英國的Grove發明了燃料電池,并用這種以鉑黑為電極催化劑的簡單的氫氧燃料電池點亮了倫敦講演廳的照明燈。1889年Mood和Langer首先采用了燃料電池這一名稱,并獲得200mA/m2電流密度。由于發電機和電極過程動力學的研究未能跟上,燃料電池的研究直到20世紀50年代才有了實質性的進展,英國
燃料電池的發展
劍橋大學的Bacon用高壓氫氧制成了具有實用功率水平的燃料電池。60年代,這種電池成功地應用于阿波羅(Appollo)登月飛船。從60年代開始,氫氧燃料電池廣泛應用于宇航領域,同時,兆瓦級的磷酸燃料電池也研制成功。從80年代開始,各種小功率電池在宇航、軍事、交通等各個領域中得到應用。燃料電池是一種將儲存在燃料和氧化劑中的化學能,直接轉化為電能的裝置。當源源不斷地從外部向燃料電池供給燃料和氧化劑時,它可以連續發電。依據電解質的不同,燃料電池分為堿性燃料電池(AFC)、磷酸型燃料電池(PAFC)、熔融碳酸鹽燃料電池(MCFC)、固體氧化物燃料電池(SOFC)及質子交換膜燃料電池(PEMFC)等。燃料電池不受卡諾循環限制,能量轉換效率高,潔凈、無污染、噪聲低,模塊結構、積木性強、比功率高,既可以集中供電,也適合分散供電。
火力發電的出現
大型電站,火力發電由于機組的規模足夠大才能獲得令人滿意的效率,但裝有巨型機組的發電廠又受各種條件的限制不能貼進用戶,因此只好集中發電由電網輸送給用戶。但是機組大了其發電的靈活性又不能適應戶戶的需要,電網隨用戶的用電負荷變化有時呈現為高峰,有時則呈現為低谷。為了適應用電負荷的變化只好備用一部分機組或修建抽水蓄能電站來應急,這在總體上都是以犧牲電網的效益為代價的。傳統的火力發電站的燃燒能量大約有近70%要消耗在鍋爐和汽輪發電機這些龐大的設備上,燃燒時還會排放大量的有害物質。而使用燃料電池發電,是將燃料的化學能直接轉換為電能,不需要進行燃燒,沒有轉動部件,理論上能量轉換率為100%,裝置無論大小實際發電效率可達40%~60%,可以實現直接進入企業、飯店、賓館、家庭實現熱電聯產聯用,沒有輸電輸熱損失,綜合能源效率可達80%,裝置為積木式結構,容量可小到只為手機供電、大到和火力發電廠相比,非常靈活。
發展狀況
國內
在中國的燃料電池研究始于1958年,原電子工業部天津電源研究所最早開展了MCFC的研究。70年代在航天事業的推動下,中國燃料電池的研究曾呈現出第一次高潮。其間中國科學院大連化學物理研究所研制成功的兩種類型的堿性石棉膜型氫氧燃料電池系統(千瓦級AFC)均通過了例行的航天環境模擬試驗。1990年中國科學院長春應用化學研究所承擔了中科院PEMFC的研究任務,1993年開始進行直接甲醇質子交換膜燃料電池(DMFC)的研究。電力工業部哈爾濱電站成套設備研究所于1991年研制出由7個單電池組成的MCFC原理性電池。“八五”期間,中科院大連化學物理研究所、上海硅酸鹽研究所、化工冶金研究所、清華大學等國內十幾個單位進行了與SOFC的有關研究。到90年代中期,由于國家科技部與中科院將燃料電池技術列入“九五”科技攻關計劃的推動,中國進入了燃料電池研究的第二個高潮。在中國科學工作者在燃料電池基礎研究和單項技術方面取得了不少進展,積累了一定經驗。但是,由于多年來在燃料電池研究方面投入資金數量很少,就燃料電池技術的總體水平來看,與發達國家尚有較大差距。我國有關部門和專家對燃料電池十分重視,1996年和1998年兩次在香山科學會議上對中國燃料電池技術的發展進行了專題討論,強調了自主研究與開發燃料電池系統的重要性和必要性。近幾年中國加強了在PEMFC方面的研究力度。2000年大連化學物理研究所與中科院電工研究所已完成30kW車用用燃料電池的全部試驗工作。北京富原公司也宣布,2001年將提供40kW的中巴燃料電池,并接受訂貨??萍疾扛辈块L徐冠華在EVS16屆大會上宣布,中國將在2000年裝出首臺燃料電池電動車。此前參與燃料電池研究的有關概況如下:
1:PEMFC的研究狀況
中國最早開展PEMFC研制工作的是長春應用化學研究所,該所于1990年在中科院扶持下開始研究PEMFC,工作主要集中在催化劑、電極的制備工藝和甲醇外重整器的研制已制造出100WPEMFC樣機。1994年又率先開展直接甲醇質子交換膜燃料電池的研究工作。該所與美國CaseWesternReserve大學和俄羅斯氫能與等離子體研究所等建立了長期協作關系。中國科學院大連化學物理所于1993年開展了PEMFC的研究,在電極工藝和電池結構方面做了許多工作,現已研制成工作面積為140cm2的單體電池,其輸出功率達0.35W/cm2。
復旦大學在90年代初開始研制直接甲醇PEMFC,主要研究聚苯并咪唑膜的制備和電極制備工藝。廈門大學與香港大學和美國的CaseWesternReserve大學合作開展了直接甲醇PEMFC的研究。
1994年,上海大學與北京石油大學合作研究PEMFC(“八五”攻關項目),主要研究催化劑、電極、電極膜集合體的制備工藝。
北京理工大學于1995年在兵器工業部資助下開始了PEMFC的研究,單體電池的電流密度為150mA/cm2。
中國科學院工程熱物理研究所于1994年開始研究PEMFC,主營使用計算傳熱和計算流體力學方法對各種供氣、增濕、排熱和排水方案進行比較,提出改進的傳熱和傳質方案。
天津電源研究所1997年開始PEMFC的研究,擬從國外引進1.5kW的電池,在解析吸收國外先進技術的基礎上開展研究。
1995年北京富原公司與加拿大新能源公司合作進行PEMFC的研制與開發,5kW的PEMFC樣機現已研制成功并開始接受訂貨。
2:MCFC的研究簡況
在中國開展MCFC研究的單位不太多。哈爾濱電源成套設備研究所在80年代后期曾研究過MCFC,90年代初停止了這方面的研究工作。
1993年中國科學院大連化學物理研究所在中國科學院的資助下開始了MCFC的研究,自制LiAlO2微粉,用冷滾壓法和帶鑄法制備出MCFC用的隔膜,組裝了單體電池,其性能已達到國際80年代初的水平。
90年代初,中國科學院長春應用化學研究所也開始了MCFC的研究,在LiAlO2微粉的制備方法研究和利用金屬間化合物作MCFC的陽極材料等方面取得了很大進展。
北京科技大學于90年代初在國家自然科學基金會的資助下開展了MCFC的研究,主要研究電極材料與電解質的相互作用,提出了用金屬間化合物作電極材料以降低它的溶解。
3:SOFC的研究簡況
最早開展SOFC研究的是中國科學院上海硅酸鹽研究所他們在1971年就開展了SOFC的研究,主要側重于SOFC電極材料和電解質材料的研究。80年代在國家自然科學基金會的資助下又開始了SOFC的研究,系統研究了流延法制備氧化鋯膜材料、陰極和陽極材料、單體SOFC結構等,已初步掌握了濕化學法制備穩定的氧化鋯納米粉和致密陶瓷的技術。吉林大學于1989年在吉林省青年科學基金資助下開始對SOFC的電解質、陽極和陰極材料等進行研究組裝成單體電池,通過了吉林省科委的鑒定。1995年獲吉林省計委和國家計委450萬元人民幣的資助,先后研究了電極、電解質、密封和聯結材料等,單體電池開路電壓達1.18V,電流密度400mA/cm2,4個單體電池串聯的電池組能使收音機和錄音機正常工作。
1991年中國科學院化工冶金研究所在中國科學院資助下開展了SOFC的研究,從研制材料著手制成了管式和平板式的單體電池,功率密度達0.09W/cm2~0.12W/cm2,電流密度為150mA/cm2~180mA/cm2,工作電壓為0.60V~0.65V。1994年該所從俄羅斯科學院烏拉爾分院電化學研究所引進了20W~30W塊狀疊層式SOFC電池組,電池壽命達1200h。他們在分析俄羅斯疊層式結構、美國Westinghouse的管式結構和德國Siemens板式結構的基礎上,設計了六面體式新型結構,該結構吸收了管式不密封的優點,電池間組合采用金屬氈柔性聯結,并可用常規陶瓷制備工藝制作。
華南理工大學于1992年在國家自然科學基金會、廣東省自然科學基金、汕頭大學李嘉誠科研基金、廣東佛山基金共一百多萬元的資助下開始了SOFC的研究,組裝的管狀單體電池,用甲烷直接作燃料,最大輸出功率為4mW/cm2,電流密度為17mA/cm2,連續運轉140h,電池性能無明顯衰減。
國際
發達國家都將大型燃料電池的開發作為重點研究項目,企業界也紛紛斥以巨資,從事燃料電池技術的研究與開發,已取得了許多重要成果,使得燃料電池即將取代傳統發電機及內燃機而廣泛應用于發電及汽車上。值得注意的是這種重要的新型發電方式可以大大降低空氣污染及解決電力供應、電網調峰問題,2MW、4.5MW、11MW成套燃料電池發電設備已進入商業化生產,各等級的燃料電池發電廠相繼在一些發達國家建成。燃料電池的發展創新將如百年前內燃機技術突破取代人力造成工業革命,也像電腦的發明普及取代人力的運算繪圖及文書處理的電腦革命,又如網絡通訊的發展改變了人們生活習慣的信息革命。燃料電池的高效率、無污染、建設周期短、易維護以及低成本的潛能將引爆21世紀新能源與環保的綠色革命。如今,在北美、日本和歐洲,燃料電池發電正以急起直追的勢頭快步進入工業化規模應用的階段,將成為21世紀繼火電、水電、核電后的第四代發電方式。燃料電池技術在國外的迅猛發展必須引起我們的足夠重視,它已是能源、電力行業不得不正視的課題。磷酸型燃料電池(PAFC)受1973年世界性石油危機以及美國PAFC研發的影響,日本決定開發各種類型的燃料電池,PAFC作為大型節能發電技術由新能源產業技術開發機構(NEDO)進行開發。自1981年起,進行了1000kW現場型PAFC發電裝置的研究和開發。1986年又開展了200kW現場性發電裝置的開發,以適用于邊遠地區或商業用的PAFC發電裝置。富士電機公司是日本最大的PAFC電池堆供應商。截至1992年,該公司已向國內外供應了17套PAFC示范裝置,富士電機在1997年3月完成了分散型5MW設備的運行研究。作為現場用設備已有50kW、100kW及500kW總計88種設備投入使用。下表所示為富士電機公司已交貨的發電裝置運行情況,到1998年止有的已超過了目標壽命4萬小時。
東芝公司從70年代后半期開始,以分散型燃料電池為中心進行開發以后,將分散電源用11MW機以及200kW機形成了系列化。11MW機是世界上最大的燃料電池發電設備,從1989年開始在東京電力公司五井火電站內建造,1991年3月初發電成功后,直到1996年5月進行了5年多現場試驗,累計運行時間超過2萬小時,在額定運行情況下實現發電效率43.6%。在小型現場燃料電池領域,1990年東芝和美國IFC公司為使現場用燃料電池商業化,成立了ONSI公司,以后開始向全世界銷售現場型200kW設備“PC25”系列。PC25系列燃料電池從1991年末運行,到1998年4月,共向世界銷售了174臺。其中安裝在美國某公司的一臺機和安裝在日本大阪梅田中心的大阪煤氣公司2號機,累計運行時間相繼突破了4萬小時。從燃料電池的壽命和可靠性方面來看,累計運行時間4萬h是燃料電池的長遠目標。東芝ONSI已完成了正式商用機PC25C型的開發,早已投放市場。PC25C型作為21世紀新能源先鋒獲得日本通商產業大獎。從燃料電池商業化出發,該設備被評價為具有高先進性、可靠性以及優越的環境性設備。它的制造成本是$3000/kW,將推出的商業化PC25D型設備成本會降至$1500/kW,體積比PC25C型減少1/4,質量僅為14t。2001年,在中國就將迎來第一座PC25C型燃料電池電站,它主要由日本的MITI(NEDO)資助的,這將是我國第一座燃料電池發電站。
質子交換膜燃料電池(PEMFC)
著名的加拿大Ballard公司在PEMFC技術上全球領先,它的應用領域從交通工具到固定電站,其子公司BallardGenerationSystem被認為在開發、生產和市場化零排放質子交換膜燃料電池上處于世界領先地位。BallardGenerationSystem最初產品是250kW燃料電池電站,其基本構件是Ballard燃料電池,利用氫氣(由甲醇、天然氣或石油得到)、氧氣(由空氣得到)不燃燒地發電。Ballard公司正和世界許多著名公司合作以使BallardFuelCell商業化。BallardFuelCell已經用于固定發電廠:由BallardGenerationSystem,GPUInternationalInc.,AlstomSA和EBARA公司共同組建了BallardGenerationSystem,共同開發千瓦級以下的燃料電池發電廠。經過5年的開發,第一座250kW發電廠于1997年8月成功發電,1999年9月送至IndianaCinergy,經過周密測試、評估,并提高了設計的性能、降低了成本,這導致了第二座電廠的誕生,它安裝在柏林,250kW輸出功率,也是在歐洲的第一次測試。很快Ballard公司的第三座250kW電廠也在2000年9月安裝在瑞士進行現場測試,緊接著,在2000年10月通過它的伙伴EBARABallard將第四座燃料電池電廠安裝在日本的NTT公司,向亞洲開拓了市場。在不同地區進行的測試將大大促進燃料電池電站的商業化。第一個早期商業化電廠將在2001年底面市。下圖是安裝在美國Cinergy的Ballard燃料電池裝置,正在測試。
各種燃料電池(3張)圖是安裝在柏林的250kWPEMFC燃料電池電站:
在美國,PlugPower公司是最大的質子交換膜燃料電池開發公司,他們的目標是開發、制造適合于居民和汽車用經濟型燃料電池系統。1997年,PlugPower模塊第一個成功地將汽油轉變為電力。PlugPower公司開發出它的專利產品PlugPower7000居民家用分散型電源系統。商業產品在2001年初推出。家用燃料電池的推出將使核電站、燃氣發電站面臨挑戰,為了推廣這種產品,1999年2月,PlugPower公司和GEMicroGen成立了合資公司,產品改稱GEHomeGen7000,由GEMicroGen公司負責全球推廣。此產品將提供7kW的持續電力。GE/Plug公司宣稱其2001年初售價為$1500/kW。他們預計5年后,大量生產的燃料電池售價將降至$500/kW。假設有20萬戶家庭各安裝一個7kW的家用燃料電池發電裝置,其總和將接近一個核電機組的容量,這種分散型發電系統可用于尖峰用電的供給,又因分散式系統設計增加了電力的穩定性,即使少數出現了故障,但整個發電系統依然能正常運轉。在Ballard公司的帶動下,許多汽車制造商參加了燃料電池車輛的研制,例如:Chrysler(克萊斯勒)、Ford(福特)、GM(通用)、Honda(本田)、Nissan(尼桑)、VolkswagenAG(大眾)和Volvo(富豪)等,它們許多正在使用的燃料電池都是由Ballard公司生產的,同時,它們也將大量的資金投入到燃料電池的研制當中,克萊斯勒公司給Ballard公司注入4億5千萬加元用于開發燃料電池汽車,大大的促進了PEMFC的發展。1997年,Toyota公司就制成了一輛RAV4型帶有甲醇重整器的跑車,它由一個25kW的燃料電池和輔助干電池一起提供了全部50kW的能量,最高時速可以達到125km/h,行程可達500km。這些大的汽車公司均有燃料電池開發計劃,雖然燃料電池汽車商業化的時機還未成熟,但幾家公司已確定了開始批量生產的時間表,Daimler-Benz公司宣布,到2004年將年產40000輛燃料電池汽車。因而未來十年,極有可能達到100000輛燃料電池汽車。
熔融碳酸鹽燃料電池(MCFC)
50年代初,熔融碳酸鹽燃料電池(MCFC)由于其可以作為大規模民用發電裝置的前景而引起了世界范圍的重視。在這之后,MCFC發展的非???,它在電池材料、工藝、結構等方面都得到了很大的改進,但電池的工作壽命并不理想。到了80年代,它已被作為第二代燃料電池,而成為實現兆瓦級商品化燃料電池電站的主要研究目標,研制速度日益加快。MCFC的主要研制者集中在美國、日本和西歐等國家。預計2002年將商品化生產。
美國能源部(DOE)2000年已撥給固定式燃料電池電站的研究費用4420萬美元,而其中的2/3將用于MCFC的開發,1/3用于SOFC的開發。美國的MCFC技術開發一直主要由兩大公司承擔,ERC(EnergyResearchCorporation)(現為FuelCellEnergyInc.)和M-CPower公司。他們通過不同的方法建造MCFC堆。兩家公司都到了現場示范階段:ERC1996年已進行了一套設于加州圣克拉拉的2MW的MCFC電站的實證試驗,正在尋找3MW裝置試驗的地點。ERC的MCFC燃料電池在電池內部進行無燃氣的改質,而不需要單獨設置的改質器。根據試驗結果,ERC對電池進行了重新設計,將電池改成250kW單電池堆,而非原來的125kW堆,這樣可將3MW的MCFC安裝在0.1英畝的場地上,從而降低投資費用。ERC預計將以$1200/kW的設備費用提供3MW的裝置。這與小型燃氣渦輪發電裝置設備費用$1000/kW接近。但小型燃氣發電效率僅為30%,并且有廢氣排放和噪聲問題。與此同時,美國M-CPower公司已在加州圣迭戈的海軍航空站進行了250kW裝置的試驗,計劃在同一地點試驗改進75kW裝置。M-CPower公司正在研制500kW模塊,計劃2002年開始生產。
日本對MCFC的研究,自1981年“月光計劃”時開始,1991年后轉為重點,每年在燃料電池上的費用為12-15億美元,1990年政府追加2億美元,專門用于MCFC的研究。電池堆的功率1984年為1kW,1986年為10kW。日本同時研究內部轉化和外部轉化技術,1991年,30kW級間接內部轉化MCFC試運轉。1992年50-100kW級試運轉。1994年,分別由日立和石川島播磨重工完成兩個100kW、電極面積1m2,加壓外重整MCFC。另外由中部電力公司制造的1MW外重整MCFC正在川越火力發電廠安裝,預計以天然氣為燃料時,熱電效率大于45%,運行壽命大于5000h。由三菱電機與美國ERC合作研制的內重整30kWMCFC已運行了10000h。三洋公司也研制了30kW內重整MCFC。石川島播磨重工有世界上最大面積的MCFC燃料電池堆,試驗壽命已達13000h。日本為了促進MCFC的開發研究,于1987年成立了MCFC研究協會,負責燃料電池堆運轉、電廠外圍設備和系統技術等方面的研究,它已聯合了14個單位成為日本研究開發主力。
歐洲早在1989年就制定了1個Joule計劃,目標是建立環境污染小、可分散安裝、功率為200MW的“第二代”電廠,包括MCFC、SOFC和PEMFC三種類型,它將任務分配到各國。進行MCFC研究的主要有荷蘭、意大利、德國、丹麥和西班牙。荷蘭對MCFC的研究從1986年已經開始,1989年已研制了1kW級電池堆,1992年對10kW級外部轉化型與1kW級內部轉化型電池堆進行試驗,1995年對煤制氣與天然氣為燃料的2個250kW系統進行試運轉。意大利于1986年開始執行MCFC國家研究計劃,1992-1994年研制50-100kW電池堆,意大利Ansodo與IFC簽定了有關MCFC技術的協議,已安裝一套單電池(面積1m2)自動化生產設備,年生產能力為2-3MW,可擴大到6-9MW。德國MBB公司于1992年完成10kW級外部轉化技術的研究開發,在ERC協助下,于1992年-1994年進行了100kW級與250kW級電池堆的制造與運轉試驗?,F在MBB公司擁有世界上最大的280kW電池組體。
資料表明,MCFC與其他燃料電池比有著獨特優點:
a.發電效率高比PAFC的發電效率還高;
b.不需要昂貴的白金作催化劑,制造成本低;
c.可以用CO作燃料;
d.由于MCFC工作溫度600-1000℃,排出的氣體可用來取暖,也可與汽輪機聯合發電。若熱電聯產,效率可提高到80%;
e.中小規模經濟性與幾種發電方式比較,當負載指數大于45%時,MCFC發電系統成本最低。與PAFC相比,雖然MCFC起始投資高,但PAFC的燃料費遠比MCFC高。當發電系統為中小規模分散型時,MCFC的經濟性更為突出;
f.MCFC的結構比PAFC簡單。
固體氧化物燃料電池(SOFC)
SOFC由用氧化釔穩定氧化鋯(YSZ)那樣的陶瓷給氧離子通電的電解質和由多孔質給電子通電的燃料和空氣極構成??諝庵械难踉诳諝鈽O/電解質界面被氧化,在空氣燃料之間氧的分差作用下,在電解質中向燃料極側移動,在燃料極電解質界面和燃料中的氫或一氧化碳反應,生成水蒸氣或二氧化碳,放出電子。電子通過外部回路,再次返回空氣極,此時產生電能。
SOFC的特點如下:
由于是高溫動作(600-1000℃),通過設置底面循環,可以獲得超過60%效率的高效發電。
由于氧離子是在電解質中移動,所以也可以用CO、煤氣化的氣體作為燃料。
由于電池本體的構成材料全部是固體,所以沒有電解質的蒸發、流淌。另外,燃料極空氣極也沒有腐蝕。動作溫度高,可以進行甲烷等內部改質。
與其他燃料電池比,發電系統簡單,可以期望從容量比較小的設備發展到大規模設備,具有廣泛用途。
在固定電站領域,SOFC明顯比PEMFC有優勢。SOFC很少需要對燃料處理,內部重整、內部熱集成、內部集合管使系統設計更為簡單,而且,SOFC與燃氣輪機及其他設備也很容易進行高效熱電聯產。下圖為西門子-西屋公司開發出的世界第一臺SOFC和燃氣輪機混合發電站,它于2000年5月安裝在美國加州大學,功率220kW,發電效率58%。未來的SOFC/燃氣輪機發電效率將達到60-70%。
被稱為第三代燃料電池的SOFC正在積極的研制和開發中,它是正在興起的新型發電方式之一。美國是世界上最早研究SOFC的國家,而美國的西屋電氣公司所起的作用尤為重要,現已成為在SOFC研究方面最有權威的機構。早在1962年,西屋電氣公司就以甲烷為燃料,在SOFC試驗裝置上獲得電流,并指出烴類燃料在SOFC內必須完成燃料的催化轉化與電化學反應兩個基礎過程,為SOFC的發展奠定了基礎。此后10年間,該公司與OCR機構協作,連接400個小圓筒型ZrO2-CaO電解質,試制100W電池,但此形式不便供大規模發電裝置應用。80年代后,為了開辟新能源,緩解石油資源緊缺而帶來的能源危機,SOFC研究得到蓬勃發展。西屋電氣公司將電化學氣相沉積技術應用于SOFC的電解質及電極薄膜制備過程,使電解質層厚度減至微米級,電池性能得到明顯提高,從而揭開了SOFC的研究嶄新的一頁。80年代中后期,它開始向研究大功率SOFC電池堆發展。1986年,400W管式SOFC電池組在田納西州運行成功。
燃料電池
另外,美國的其它一些部門在SOFC方面也有一定的實力。位于匹茲堡的PPMF是SOFC技術商業化的重要生產基地,這里擁有完整的SOFC電池構件加工、電池裝配和電池質量檢測等設備,是目前世界上規模最大的SOFC技術研究開發中心。1990年,該中心為美國DOE制造了20kW級SOFC裝置,該裝置采用管道煤氣為燃料,已連續運行了1700多小時。與此同時,該中心還為日本東京和大阪煤氣公司、關西電力公司提供了兩套25kW級SOFC試驗裝置,其中一套為熱電聯產裝置。另外美國阿爾貢國家實驗室也研究開發了疊層波紋板式SOFC電池堆,并開發出適合于這種結構材料成型的澆注法和壓延法。使電池能量密度得到顯著提高,是比較有前途的SOFC結構。在日本,SOFC研究是“月光計劃”的一部分。早在1972年,電子綜合技術研究所就開始研究SOFC技術,后來加入“月光計劃”研究與開發行列,1986年研究出500W圓管式SOFC電池堆,并組成1.2kW發電裝置。東京電力公司與三菱重工從1986年12月開始研制圓管式SOFC裝置,獲得了輸出功率為35W的單電池,當電流密度為200mA/cm2時,電池電壓為0.78V,燃料利用率達到58%。1987年7月,電源開發公司與這兩家公司合作,開發出1kW圓管式SOFC電池堆,并連續試運行達1000h,最大輸出功率為1.3kW。關西電力公司、東京煤氣公司與大阪煤氣公司等機構則從美國西屋電氣公司引進3kW及2.5kW圓管式SOFC電池堆進行試驗,取得了滿意的結果。從1989年起,東京煤氣公司還著手開發大面積平板式SOFC裝置,1992年6月完成了100W平板式SOFC裝置,該電池的有效面積達400cm2?,FFuji與Sanyo公司開發的平板式SOFC功率已達到千瓦級。另外,中部電力公司與三菱重工合作,從1990年起對疊層波紋板式SOFC系統進行研究和綜合評價,研制出406W試驗裝置,該裝置的單電池有效面積達到131cm2。
在歐洲早在70年代,聯邦德國海德堡中央研究所就研究出圓管式或半圓管式電解質結構的SOFC發電裝置,單電池運行性能良好。80年代后期,在美國和日本的影響下,歐共體積極推動歐洲的SOFC的商業化發展。德國的Siemens、DomierGmbH及ABB研究公司致力于開發千瓦級平板式SOFC發電裝置。Siemens公司還與荷蘭能源中心(ECN)合作開發開板式SOFC單電池,有效電極面積為67cm2。ABB研究公司于1993年研制出改良型平板式千瓦級SOFC發電裝置,這種電池為金屬雙極性結構,在800℃下進行了實驗,效果良好?,F正考慮將其制成25~100kW級SOFC發電系統,供家庭或商業應用。
特點分類
特點與原理
由于燃料電池能將燃料的化學能直接轉化為電能,因此,它沒有像通常的火力發電機那樣通過鍋爐、汽輪機、發電機的能量形態變化,可以避免中間的轉換的損失,達到很高的發電效率。同時還有以下一些特點:
不管是滿負荷還是部分負荷均能保持高發電效率;
不管裝置規模大小均能保持高發電效率;
具有很強的過負載能力;
通過與燃料供給裝置組合的可以適用的燃料廣泛;
發電出力由電池堆的出力和組數決定,機組的容量的自由度大;
電池本體的負荷響應性好,用于電網調峰優于其他發電方式;
用天然氣和煤氣等為燃料時,NOX及SOX等排出量少,環境相容性優。
如此由燃料電池構成的發電系統對電力工業具有極大的吸引力。
燃料電池按其工作溫度是不同,把堿性燃料電池(AFC,工作溫度為100℃)、固體高分子型質子膜燃料電池(PEMFC,也稱為質子膜燃料電池,工作溫度為100℃以內)和磷酸型燃料電池(PAFC,工作溫度為200℃)稱為低溫燃料電池;把熔融碳酸鹽型燃料電池(MCFC,工作溫度為650℃)和固體氧化型燃料電池(SOFC,工作溫度為1000℃)稱為高溫燃料電池,并且高溫燃料電池又被稱為面向高質量排氣而進行聯合開發的燃料電池。另一種分類是按其開發早晚順序進行的,把PAFC稱為第一代燃料電池,把MCFC稱為第二代燃料電池,把SOFC稱為第三代燃料電池。這些電池均需用可燃氣體作為其發電用的燃料。
燃料電池其原理是一種電化學裝置,其組成與一般電池相同。其單體電池是由正負兩個電極(負極即燃料電極和正極即氧化劑電極)以及電解質組成。不同的是一般電池的活性物質貯存在電池內部,因此,限制了電池容量。而燃料電池的正、負極本身不包含活性物質,只是個催化轉換元件。因此燃料電池是名符其實的把化學能轉化為電能的能量轉換機器。電池工作時,燃料和氧化劑由外部供給,進行反應。原則上只要反應物不斷輸入,反應產物不斷排除,燃料電池就能連續地發電。這里以氫-氧燃料電池為例來說明燃料電池
氫-氧燃料電池反應原理這個反映是電觧水的逆過程。電極應為:
負極:H2+2OH-→2H2O+2e-
正極:1/2O2+H2O+2e-→2OH-
電池反應:H2+1/2O2==H2O
另外,只有燃料電池本體還不能工作,必須有一套相應的輔助系統,包括反應劑供給系統、排熱系統、排水系統、電性能控制系統及安全裝置等。
燃料電池通常由形成離子導電體的電解質板和其兩側配置的燃料極(陽極)和空氣極(陰極)、及兩側氣體流路構成,氣體流路的作用是使燃料氣體和空氣(氧化劑氣體)能在流路中通過。
在實用的燃料電池中因工作的電解質不同,經過電解質與反應相關的離子種類也不同。PAFC和PEMFC反應中與氫離子(H)相關,發生的反應為:
燃料極:H2=2H+2e-(1)
空氣極:2H+1/2O2+2e-=H2O(2)
全體:H2+1/2O2=H2O(3)
氫氧燃料電池組成和反應循環圖
在燃料極中,供給的燃料氣體中的H2分解成H和e-移動到電解質中與空氣極側供給的O2發生反應。e-經由外部的負荷回路,再反回到空氣極側,參與空氣極側的反應。一系例的反應促成了e-不間斷地經由外部回路,因而就構成了發電。并且從上式中的反應式(3)可以看出,由H2和O2生成的H2O,除此以外沒有其他的反應,H2所具有的化學能轉變成了電能。但實際上,伴隨著電極的反應存在一定的電阻,會引起了部分熱能產生,由此減少了轉換成電能的比例。引起這些反應的一組電池稱為組件,產生的電壓通常低于一伏。因此,為了獲得大的出力需采用組件多層迭加的辦法獲得高電壓堆。組件間的電氣連接以及燃料氣體和空氣之間的分離,采用了稱之為隔板的、上下兩面中備有氣體流路的部件,PAFC和PEMFC的隔板均由碳材料組成。堆的出力由總的電壓和電流的乘積決定,電流與電池中的反應面積成比。
PAFC的電解質為濃磷酸水溶液,而PEMFC電解質為質子導電性聚合物系的膜。電極均采用碳的多孔體,為了促進反應,以Pt作為觸媒,燃料氣體中的CO將造成中毒,降低電極性能。為此,在PAFC和PEMFC應用中必須限制燃料氣體中含有的CO量,特別是對于低溫工作的PEMFC更應嚴格地加以限制。
磷酸燃料電池的基本組成和反應原理是:燃料氣體或城市煤氣添加水蒸氣后送到改質器,把燃料轉化成H2、CO和水蒸氣的混合物,CO和水進一步在移位反應器中經觸媒劑轉化成H2和CO2。經過如此處理后的燃料氣體進入燃料堆的負極(燃料極),同時將氧輸送到燃料堆的正極(空氣極)進行化學反應,借助觸媒劑的作用迅速產生電能和熱能。
相對PAFC和PEMFC,高溫型燃料電池MCFC和SOFC則不要觸媒,以CO為主要成份的煤氣化氣體可以直接作為燃料應用,而且還具有易于利用其高質量排氣構成聯合循環發電等特點。
MCFC主構成部件。含有電極反應相關的電解質(通常是為Li與K混合的碳酸鹽)和上下與其相接的2塊電極板(燃料極與空氣極),以及兩電極各自外側流通燃料氣體和氧化劑氣體的氣室、電極夾等,電解質在MCFC約600~700℃的工作溫度下呈現熔融狀態的液體,形成了離子導電體。電極為鎳系的多孔質體,氣室的形成采用抗蝕金屬。
MCFC工作原理??諝鈽O的O2(空氣)和CO2與電相結合,生成(CO2)-3(碳酸離子),電解質將(CO2)-3移到燃料極側,與作為燃料供給的H相結合,放出e-,同時生成H2O和CO2?;瘜W反應式如下:
燃料極:H2+(CO2)3=H2O+2e-+CO2(4)
空氣極:CO2+1/2O2+2e-=(CO2)-3(5)
全體:H2+1/2O2=H2O(6)
在這一反應中,e-同在PAFC中的情況一樣,它從燃料極被放出,通過外部的回路反回到空氣極,由e-在外部回路中不間斷的流動實現了燃料電池發電。另外,MCFC的最大特點是,必須要有有助于反應的(CO2)-3離子,因此,供給的氧化劑氣體中必須含有碳酸氣體。并且,在電池內部充填觸媒,從而將作為天然氣主成份的CH4在電池內部改質,在電池內部直接生成H2的方法也已開發出來了。而在燃料是煤氣的情況下,其主成份CO和H2O反應生成H2,因此,可以等價地將CO作為燃料來利用。為了獲得更大的出力,隔板通常采用Ni和不銹鋼來制作。
SOFC是以陶瓷材料為主構成的,電解質通常采用ZrO2(氧化鋯),它構成了O2-的導電體Y2O3(氧化釔)作為穩定化的YSZ(穩定化氧化鋯)而采用。電極中燃料極采用Ni與YSZ復合多孔體構成金屬陶瓷,空氣極采用LaMnO3(氧化鑭錳)。隔板采用LaCrO3(氧化鑭鉻)。為了避免因電池的形狀不同,電解質之間熱膨脹差造成裂紋產生等,開發了在較低溫度下工作的SOFC。電池形狀除了有同其他燃料電池一樣的平板型外,還有開發出了為避免應力集中的圓筒型。SOFC的反應式如下:
燃料極:H2+O-2=H2+O2+e-(7)
空氣極:1/2O2+2e-=O-2(8)
全體:H2+1/2O2=H2O(9)
燃料極,H2經電解質而移動,與O-2反應生成H2O和e-??諝鈽O由O2和e-生成O-2。全體同其他燃料電池一樣由H2和O2生成H2O。在SOFC中,因其屬于高溫工作型,因此,在無其他觸媒作用的情況下即可直接在內部將天然氣主成份CH4改質成H2加以利用,并且煤氣的主要成份CO可以直接作為燃料利用。
分類
燃料電池可分為很多種類型。按燃料的處理方式的不同,可分為直接式、間接式和再生式。直接式燃料電池按溫度的不同又可分為低溫、中溫和高溫三種類型。間接式的包括重整式燃料電池和生物燃料電池。再生式燃料電池中有光、電、熱、放射化學燃料電池等。按照電解質類型的不同,可分為堿型、磷酸型、聚合物型、熔融碳酸鹽型、固體電解質型燃料電池。
優缺點
燃料電池的優勢,科技手段中,尚沒有一項能源生成技術能如燃料電池一樣將諸多優點集合于一身。
能源安全性。自1970年代的石油危機后,各大工業國對石油的依賴仍有增無減,而且主要靠石油輸出國的供應。美國載客車輛每日可消耗約600萬桶油,占油料進口量之85%。若有20%的車輛采用燃料電池來驅動,每日便可省下120萬桶油。
國防安全性。燃料電池發電設備具有散布性的特質,它可讓地區擺脫中央發電站式的電力輸配架構。長距離、高電壓的輸電網絡易成為軍事行動的攻擊目標。燃料電池設備可采集中也可采分散性配置,進而降低了敵人欲癱瘓國家供電系統的風險。
高可靠度供電。燃料電池可架構于輸配電網絡之上作為備援電力,也可獨立于電力網之外。在特殊的場合下,模塊化的設置(串聯安裝幾個完全相同的電池組系統以達到所需的電力)可提供極高的穩定性。
燃料多樣性?,F代種類繁多的電池中,雖然仍以氫氣為主要燃料,但配備「燃料轉化器(或譯重組器,fuelreformer)」的電池系統可以從碳氫化合物或醇類燃料中萃取出氫元素來利用。此外如垃圾掩埋場、廢水處理場中厭氧微生物分解產生的沼氣也是燃料的一大來源。利用自然界的太陽能及風力等可再生能源提供的電力,可用來將水電解產生氫氣,再供給至燃料電池,如此亦可將「水」看成是未經轉化的燃料,實現完全零排放的能源系統。只要不停地供給燃料給電池,它就可不斷地產生電力。
高效能。由于燃料電池的原理系經由化學能直接轉換為電能,而非產生大量廢氣與廢熱的燃燒作用,現今利用碳氫燃料的發電系統電能的轉換效率可達40~50%;直接使用氫氣的系統效率更可超過50%;發電設施若與燃氣渦輪機并用,則整體效率可超過60%;若再將電池排放的廢熱加以回收利用,則燃料能量的利用率可超過85%。用于車輛的燃料電池其能量轉換率約為傳統內燃機的3倍以上,內燃引擎的熱效率約在10~20%之譜。
環境親和性??茖W家們已認定空氣污染是造成心血管疾病、氣喘及癌癥的元兇之一。最近的健康研究顯示,市區污染性的空氣對健康的威脅如同吸入二手煙。燃料電池運用能源的方式大幅優于燃油動力機排放大量危害性廢氣的方案,其排放物大部份是水份。某些燃料電池雖亦排放二氧化碳,但其含量遠低于汽油之排放量(約其1/6)。
燃料電池發電設備產生1000仟瓦-小時的電能,排放之污染性氣體少于1盎斯;而傳統燃油發電機則會產生25磅重的污染物。因此,燃料電池不僅可改善空氣污染的情況,甚可能許給人類未來一片潔凈的天空。
可彈性設置/用途廣。燃料電池的迷人之處在于其多樣風貌。除了前述的集中分散兩相宜的特點外,它還具有縮放性。利用黃光微影技術可制作微型化的燃料電池;利用模塊式堆棧配置可將供電量放大至所欲的輸出功率。單一發電元所產生的電壓約為0.7伏特,剛好能點亮一只燈。將發電元予以串接,便構成燃料電池組,其電壓則增加為0.7伏特乘以串聯的發電元個數。
燃料電池的劣勢主要是價格和技術上存在一些瓶頸,摘列如下:
燃料電池造價偏高:車用PEMFC之成本中質子交換隔膜(USD300/m2)約占成本之35%;鉑觸媒約占40%,二者均為貴重材料。
反應/啟動性能:燃料電池的啟動速度尚不及內燃機引擎。反應性可藉增加電極活性、提高操作溫度及反應控制參數來達到,但提高穩定性則必須避免副反應的發生。反應性與穩定性常是魚與熊掌不可兼得。
碳氫燃料無法直接利用:除甲醇外,其它的碳氫化合物燃料均需經過轉化器、一氧化碳氧化器處理產生純氫氣后,方可供現今的燃料電池利用。這些設備亦增加燃料電池系統之投資額。
氫氣儲存技術:FCV的氫燃料是以壓縮氫氣為主,車體的載運量因而受限,每次充填量僅約2.5~3.5公斤,尚不足以滿足現今汽車單程可跑480~650公里的續航力。以-253℃保持氫的液態氫系統雖已測試成功,但卻有重大的缺陷:約有1/3的電能必須用來維持槽體的低溫,使氫維持于液態,且從隙縫蒸發而流失的氫氣約為總存量的5%。
氫燃料基礎建設不足:氫氣在工業界雖已使用多年且具經濟規模,但全世界充氫站僅約70站,仍值示范推廣階段。此外,加氣時間頗長,約需時5分鐘,尚跟不上工商時代的步伐。
發電系統
天然氣發電
利用天然氣的發電系統
MCFC需要供給的燃料氣體是H2,它可由天然氣中的CH4改質生成??諝鈽O側需要的O2通過空氣壓縮機供給。另一個反應因素CO2,空氣極側反應等量地再利用發電時燃料極產生的CO2。除了有CO2外,燃料極排出氣體還含有未反應的可燃成份,一起輸送到改質器的燃燒器側,天然氣改質所必需的熱量就由該燃燒熱供給。這種情況下,排出的燃料氣體會含有過多的H2O,將影響發熱量,為此通常是先將排出燃料氣體冷卻,將水份濾去后再輸送到改質器的燃燒側。從改質器燃燒側出來的氣體與來自壓縮機的空氣相混合后供給空氣極側。
在使用PAFC的情況下,若以煤炭為燃料發電時就不容易了,采用天然氣時,其構成類似于MCFC機組,基本上是由電池本體發電。原因是PAFC排出氣體溫度較低,與其進行附加發電不如作為熱電聯產電源。
SOFC能和較高溫度的排氣體構成附加發電系統,由于SOFC不需要CO2的再循環等,結構簡單,其發電效率可以達到50-60%。
煤炭發電
利用煤炭的發電系統
以MCFC為例進行介紹。煤炭需經煤氣化裝置生成作為MCFC可用燃料的CO及H2,并在進入MCFC前除去其中含有的雜質(微量的雜質就會構成對MCFC的惡劣影響),這種供給MCFC精制煤氣,其壓力通常高于MCFC的工作壓力,在進入MCFC供氣前先經膨脹式渦輪機回收其動力。渦輪機出口氣體,經與部分來自燃料極(陽極)排出的高溫氣體(約700℃)相混合,調整為對電池的適宜溫度(約600℃)。該陽極氣體的再循環是,將排出的燃料氣體中所含的未反應的燃料成分返回入口加以再利用,借以達到提高燃料的利用率。向空氣極側供給O2和CO2是通過空氣壓縮機輸出的空氣和排出燃料氣體相混合來完成的。但是,碳酸氣是采用觸媒燃燒器將未燃的H2及CO變換成H2O和CO2后供給的。
排熱回收系統(末級循環),是由利用空氣極側排氣的膨脹式渦輪機和利用蒸汽的汽輪機發電來構成。膨脹式渦輪機與壓縮機的相組合,其剩余動力用于發電。蒸汽是由來自其下流的熱回收和煤氣化裝置以及陰極氣體再循環回路中的蒸汽發生器之間的組合產生,形成汽水循環。
這種機組的發電效率,因煤氣化方式和煤氣精制方式等的不同而有若干差異。利用煤系統SOFC其構成是復雜的。但若用管道氣就簡單多了,主要的是采用煤炭氣化系統造成的,其效率為45~55%。
潛力用途
燃料電池用途廣泛,既可應用于軍事、空間、發電廠領域,也可應用于機動車、移動設備、居民家庭等領域。早期燃料電池發展焦點集中在軍事空間等專業應用以及千瓦級以上分散式發電上。電動車領域成為燃料電池應用的主要方向,市場已有多種采用燃料電池發電的自動車出現。另外,透過小型化的技術將燃料電池運用于一般消費型電子產品也是應用發展方向之一,在技術的進步下,未來小型化的燃料電池將可用以取代現有的鋰電池或鎳氫電池等高價值產品,作為用于筆記本電腦、無線電電話、錄像機、照相機等攜帶型電子產品的電源。近20多年來,燃料電池經歷了堿性、磷酸、熔融碳酸鹽和固體氧化物等幾種類型的發展階段,燃料電池的研究和應用正以極快的速度在發展。在所有燃料電池中,堿性燃料電池(AFC)發展速度最快,主要為空間任務,包括航天飛機提供動力和飲用水;質子交換膜燃料電池(PEMFC)已廣泛作為交通動力和小型電源裝置來應用;磷酸燃料電池(PAFC)作為中型電源應用進入了商業化階段,是民用燃料電池的首選;熔融碳酸鹽型燃料電池(MCFC)也已完成工業試驗階段;起步較晚的固態氧化物燃料電池(SOFC)作為發電領域最有應用前景的燃料電池,是未來大規模清潔發電站的優選對象。
多年來人們一直在努力尋找既有較高的能源利用效率又不污染環境的能源利用方式,而燃料電池就是比較理想的發電技術。燃料電池十分復雜,涉及化學熱力學、電化學、電催化、材料科學、電力系統及自動控制等眾多學科相關理論,具有發電效率高、環境污染少等優點。
價值評估
燃料電池運行時必須使用流動性好的氣體燃料。低溫燃料電池要用氫氣,高溫燃料電池可以直接使用天然氣、煤氣。這種燃料的前景如何呢?我國的天然氣儲量是十分豐富的,現已探明陸地上儲量為1.9萬億m3,專家認為我國已探明天然氣儲量為30萬億m3。中國還將利用豐富的鄰國天然氣資源,俄羅斯西西伯利亞已探明天然氣儲量為38.6萬億m3,可向我國年供氣200~300億m3;俄羅斯的東西伯利亞已探明天然氣儲量3.13萬億m3,可向我國年供氣100~200億m3;俄遠東地區、薩哈林島探明天然氣儲量1萬億m3,可向我國東北年供氣100億m3以上。中亞地區的哈薩克斯坦、烏茲別克斯坦和土庫曼斯坦三國探明的天然氣儲量6.77萬億m3,可向外供氣300億m3。我國規劃在2010年以前鋪設天然氣管線9000km,屆時有望在全國形成“兩縱、兩橫、四樞紐、五氣庫”的格局,形成可靠的供氣系統。其中的兩縱是南北的輸氣干線,即薩哈林島--大慶--沈陽干線和伊爾庫茨克--北京--日照--上海輸氣干線。目前我國的生產能力約為300億m3/a,2010年為700億m3,2020年為1000~1100億m3。天然氣主要成分為CH4(占90%左右),熱值高(每立方米天然氣熱值為8600~9500千卡),便于運輸,在3000公里的距離內運用管道輸送都是十經濟的。
經濟性
燃料電池是一種正在逐步完善的能源利用方式。其投資正在不斷的降低,PEMFC的中國國外商業價格為$1500/kW,PAFC的價格為$3000/kW。中國國內富源公司公布其PEMFC接受訂貨的價格為10000元/kW。其他燃料電池國內暫無商業產品。
燃料電池發電與常規的火電投資比較不能單考慮電源投資,還應將長距離輸電、配電投資與廠用電、輸電能耗和兩種能源轉換裝置的效率考慮在內。如此來計算綜合投資大型的火電廠每千瓦約為1.3~1.5萬元。發電消耗的燃料為燃料電池的兩倍以上,按目前在中國天然氣最低市價(產地市價人民幣1元/m3)計算,當發電時間超過70000h以后,用燃料電池發電將比用傳統的熱機發電更經濟。在實際發電工程中還應考慮傳統的熱機發電占地面積大,環境污染重的問題。隨著燃料電池發電技術的不斷完善,造價將不斷的降低,特別是在規?;a后,其造價將大幅度的下降,有理由相信,不久的將來這種發電方式會對傳統熱機發電構成挑戰。
類型介紹
堿性燃料電池
堿性燃料電池(AFC)是第一個燃料電池技術的發展,最初由美國航空航天局的太空計劃,同時生產電力和水的航天器上。AFCS繼續使用NASA航天飛機上的整個程序中,除了數量有限的商業應用。
AFCS使用如氫氧化鉀在水中的堿性電解液,一般燃用純氫氣。第一個在100º;C和250º;C,但典型的工作溫度下運行的自動飛行控制系統,大約有70º;C。作為一個結果,在低的操作溫度,它是沒有必要采用一種在系統中的鉑催化劑,而是可以使用各種非貴金屬作為催化劑,以加快反應,在陽極和陰極發生。鎳是最常用的催化劑在AFC單元。
由于這些細胞的化學反應發生率比較高的燃料,電力的轉換效率,在某些應用中高達60%。
血糖燃料電池
美國麻省理工學院的工程師最新研制一種微型電池原型,從人體自然血糖分子中產生電能。
這種電池將用于驅動治療癲癇、癱瘓以及帕金森氏癥患者的大腦植入器。據悉,當前植入人體的裝置通常是由鋰電池提供動力,但是這種電池使用時間非常有限,必須進行更換。再次進入人體組織更換電池并不是醫生所喜歡做的事情,如果更換大腦植入器的電池就變得更加棘手了。
美國麻省理工學院電子工程和計算機科學副教授拉胡爾-薩爾皮什爾(RahulSarpeshkar)帶領一支研究小組負責這項研究,他們使用鉑催化劑放置在末端,一層碳納米管在另一端來建造這個電池,它們放置在一個硅片上,從而將電流連接至大腦植入器上。
當大腦組織中的血糖分子流經鉑催化劑,伴隨其氧化過程,電子和氫離子將分離開來。在電池另一端,當氧分子與單壁碳納米管接觸時,與氫離子混合形成水,該電池最多可產生180微瓦功率的電能,足以驅動一個大腦植入器發送信號繞開受損大腦組織,或者刺激大腦組織(用于治療帕金森氏癥的方法)。
血糖電池是一個較早的概念,最早出現于上世紀70年代,2010年,法國科學家設計了一種類似的電池用于驅動起搏器。這種電池混合了石墨和酶,能夠從血糖中分離電子。但這種電池的問題在于酶動力電池無法提供像鋰電池一樣的電能輸出。
只要存在血糖和水,麻省理工學院最新研制的電池就能長時間持續工作,提供動能的血糖來自于環繞大腦組織周圍的腦脊液。多數血糖并不能被人體使用,而這種電池僅使用很少部分的血糖,并不會影響大腦功能。
市場應用
電力
固定燃料電池被用于商業、工業及住宅和備用電源。
熱電聯產
熱電聯產(CHP)燃料電池系統,包括微型熱電聯產(Microcombinedheatandpower,MicroCHP)系統。
燃料電池車(FCEVs)
發展前情
便攜式電子設備廠家多年來受LIB的困擾,苦于沒有出路,汽車領域里燃料電池的曙光激發出開發小巧燃料電池,一發不可收拾。最先投入研究與開發的是歐美風險企業,日本便攜式電子設備制造商跟隨其后,緊追不舍,這些廠家參與燃料電池開發,**澎湃,各自大膽采用新材料,并且相繼獲得突破性進展,于2001年里分別發表小巧燃料電池試制品。日本便攜式電子機器廠家普遍認為,小巧燃料電池已經達到可以取代LIB的水平。
技術
燃料電池研究與開發集中在四大技術方面:(1)電解質膜;(2)電極;(3)燃料;(4)系統結構。日美歐各廠家開發面向便攜電子設備的燃料電池,尤其重視(1)~(3)方面的材料研究與開發,圖2列出一些重要的燃料電池研究課題。
燃料電池中僅次于電解質膜的構件材料便是電極材料,通過它可提取出由甲醇溶液經過分解反應生成的H+(質子)和電子。在電極處的反應,Pt發揮催化作用。反應速度是與Pt粒子的表面成正比,所以力求Pt的粒子直徑要小,爭取每單位重量有更大的表面積。實踐證明,Pt粒子的直徑一小下來,會出現多個Pt顆粒凝聚而降低催化能力的問題。NEC公司基礎研究所發現碳原子納米錐狀結構(CarbonNano-horn)上可附著2nm直徑的Pt顆粒(Pt原子直徑為0.3~0.4nm),并且Pt不含凝聚。于是,NEC利用CarbonNano-horn材料作為電極試制出以甲醇為燃料的燃料電池。
燃料電池汽車的車用儲氫器必須具有較高的單位質量儲氫密度。美能源部認為,車用高壓儲氫的單位質量密度至少應為6%,即每立方米儲存60公斤氫氣。為了滿足汽車480公里續航能力的要求,一次需儲氫大約4到7公斤。目前小型汽車的車用儲氫方式大多采用高壓儲氫,工作壓力為70兆帕(Mpa)的碳纖維儲氫瓶是目前家用汽車的最佳選擇,其售價大約為3000美元。研究人員正在致力于開發新的材料和制造工藝,以進一步降低儲氫氣瓶成本。目前正在進行的另一研究方向是,通過采用高表面積材料研究低壓吸附儲存氫氣。
內容來自百科網