-
- 微電子
門類
電子科學與技術類
發展
微電子技術包括系統電路設計、器件物理、工藝技術、材料制備、自動測試以及封裝、組裝等一系列專門的技術,微電子技術是微電子學中的各項工藝技術的總和。 微電子技術是在電子電路和系統的超小型化和微型化過程中逐漸形成和發展起來的,第二次大戰中、后期,由于軍事需要對電子設備提出了不少具有根本意義的設想,并研究出一些有用的技術。1947年晶體管的發明,后來又結合印刷電路組裝使電子電路在小型化的方面前進了一大步。到1958年前后已研究成功以這種組件為基礎的混合組件。集成電路的主要工藝技術,是在50年代后半期硅平面晶體管技術和更早的金屬真空涂膜技術基礎上發展起來的。1964年出現了磁雙極型集成電路產品。1962年生產出晶體管——晶體管邏輯電路和發射極耦合邏輯電路。MOS集成電路出現。由于MOS電路在高度集成方面的優點和集成電路對電子技術的影響,集成電路發展越來越快。70年代,微電子技術進入了以大規模集成電路為中心的新階段。隨著集成密度日益提高,集成電路正向集成系統發展,電路的設計也日益復雜、費時和昂貴。實際上如果沒有計算機的輔助,較復雜的大規模集成電路的設計是不可能的。70年代以來,集成電路利用計算機的設計有很大的進展。制版的計算機輔助設計、器件模擬、電路模擬、邏輯模擬、布局布線的計算輔助設計等程序,都先后研究成功,并發展成為包括校核、優化等算法在內的混合計算機輔助設計,乃至整套設備的計算機輔助設計系統。集成電路制造的計算機管理,也已開始實現。此外,與大規模集成和超大規模集成的高速發展相適應,有關的器件材料科學和技術、測試科學和計算機輔助測試、封裝技術和超凈室技術等都有重大的進展。 電子技術發展很快,在工藝技術上,微細加工技術,如電子束、離子束、X射線等復印技術和干法刻蝕技術日益完善,使生產上達到亞微米以至更高的光刻水平,集成電路的集成度超大型約每片10^6—10^7個元件,以至達到全圖片上集成一個復雜的微電子系統。高質量的超薄氧化層、新的離子注入退火技術、高電導高熔點金屬以及硅化物金屬化和淺歐姆結等一系列工藝技術正獲得進一步的發展。在微電子技術的設計和測試技術方面,隨著集成度和集成系統復雜性的提高,冗余技術、容錯技術,將在設計技術中得到廣泛應用。
基本工藝
包括 PHOTO DOPING ETCHING CMP 等,0.18um 0.22um 90納米工藝等。
微電子學
微電子學是研究在固體(主要是半導體)材料上構成的微小型化電路、電路及系統的電子學分支。作為電子學的分支學科,它主要研究電子或離子在固體材料中的運動規律及其應用,并利用它實現信號處理功能的科學,以實現電路的系統和集成為目的,實用性強。微電子學又是信息領域的重要基礎學科,在這一領域上,微電子學是研究并實現信息獲取、傳輸、存儲、處理和輸出的科學,是研究信息獲取的科學,構成了信息科學的基石,其發展水平直接影響著整個信息技術的發展。微電子科學技術的發展水平和產業規模是一個國家經濟實力的重要標志。
微電子學是一門綜合性很強的邊緣學科,其中包括了半導體器件物理、集成電路工藝和集成電路及系統的設計、測試等多方面的內容;涉及了固體物理學、量子力學、熱力學與統計物理學、材料科學、電子線路、信號處理、計算機輔助設計、測試和加工、圖論、化學等多個領域。微電子學是一門發展極為迅速的學科,高集成度、低功耗、高性能、高可靠性是微電子學發展的方向。信息技術發展的方向是多媒體(智能化)、網絡化和個體化。要求系統獲取和存儲海量的多媒體信息、以極高速度精確可靠的處理和傳輸這些信息并及時地把有用信息顯示出來或用于控制。所有這些都只能依賴于微電子技術的支撐才能成為現實。超高容量、超小型、超高速、超高頻、超低功耗是信息技術無止境追求的目標,是微電子技術迅速發展的動力。微電子學滲透性強,其他學科結合產生出了一系列新的交叉學科。微機電系統(MEMS)、生物芯片就是這方面的代表,是近年來發展起來的具有廣闊應用前景的新技術。 培養要求:本專業學生主要學習微電子學的基本理論和基本知識,受到科學實驗與科學思維的基本訓練,具有良好科學素養,掌握大規模集成電路及新型半導體器件的設計、制造及測試所必需的基本理論和方法,具有電路分析、工藝分析、器件性能分析和版圖設計等的基本能力。主干學科:電子科學與技術 主要課程:半導體物理及實驗、半導體器件物理、集成電路設計原理、集成電路工藝原理、集成電路CAD、微電子學專業實驗和集成電路工藝實習等。
內容來自百科網